S. SEIFULLIN KAZAKH AGROTECHICAL UNIVERSITY

Considered at the meeting of the University Academic Council APPROVED Protocol № 15 © 0 0 2019

Educational program

«Software engineering» (name of the program)

Code and classification of the field of education: 6B06 Information and communication technology

Code and classification of training areas:

6B06088 Interdisciplinary programs related to information and communication technologies

Code in the International Standard Classification of Education: 6B06

Qualification: bachelor / specialist

Bachelor in Information and Communication Technologies in the educational program "6B061002 - Software Engineering"

Training period: 4 years

Astana 2019

The author's team:

1. Ismailova Aisulu Abzhapparovna - PhD, Associate Professor of the Department of «Information systems» of S.Seifullin KATRU;

2. Shausenova Anargul Gimranovna – Candidate of technical sciences, head of the department "Information systems" of S. Seifullin KATRU;

3. Aitimova Ulzada Zholdasbekovna - Candidate of physical and mathematical Sciences, acting associate professor of the department «Information systems» of S. Seifullin KATRU;

4. Likhachevsky Dmitry Viktorovich – Candidate of technical sciences, Associate Professor, Dean of the Faculty of Computer Engineering of the Belarusian State University of Informatics and Radioelectronics, Belarus;

5. Omarkhanova Dinara Zholamanovna – senior lecturer of the Department of «Information Systems» of S. Seifullin KATRU;

6. Ispusinov Aidar Manasovich - head of the consulting department – «Platonus» LLP.

7. Sagandykov Salauat Kamaridenovic – student of educational program 6B06101 – "Software Engineering".

The team of authors was approved by the order of the NCJSC «S. Seifullin Kazakh Agro Technical Research University», № 374-H of "18" November 2023y.

Educational program 6B06101 - «Software Engineering» considered at the meeting of the Department "Information Systems" №7 of "09" March 2023 y.

Approved by the Faculty of the CSaPE council protocol №10 of "16" March 2023 y.

Passport of the educational program 6B06101 - «Software Engineering» has been updated in the Unified platform of higher education from 16.05.2023 y.

CONTENTS

N⁰	Name of the component	Page
1.	Passport of the educational program	4
2.	General characteristics of the educational program	5
3.	Competence model (portrait) graduate	6
4.	The base of passing professional practices	9
5.	Structure of the educational program	11
6.	Appendix 1. Academic Calendar	12
7.	Appendix 2. Working curriculum	14
8.	The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines	16

1 Description of the educational program 1.1 Passport of the educational program

OP "Software Engineering" is aimed at meeting the needs of society for qualified personnel in the field of information technology and computer technology, capable of solving complex engineering tasks.

The purpose of the Educational Program «Software Engineering» is to prepare software engineers, qualified developers of software systems and software architects, software quality specialists, software development project managers capable of successful independent and team professional activities.

Objectives of the Educational Program "Software Engineering":

- development of students' theoretical knowledge and practical skills that allow them to understand and apply the construction of complex software products that require the coordinated work of a team of programmers of different specializations and qualifications.

- teaching students the systematic process of designing, developing and maintaining software tools.

- formation of theoretical and practical knowledge for service and operational activities in the field of operation of automatic, automated and information systems, means of data transmission and information flows, diagnostics, control and management.

1.2 Learning outcomes

LO 1. Determine the language tool for solving problems and process information using the tools of programming languages and application programs.

LO 2. Solve problems of varying complexity using programming technology, inspect software components.

LO 3. Apply the mathematical apparatus of ICT to build algorithms for analysis, transformation, processing and to optimize information processes in various application areas.

LO 4. Apply methods and means of organizing calculations in network systems, methods and means of organizing databases and knowledge bases in computer systems and networks, control and operation of hardware and software, as well as demonstrate knowledge in the field of classical and modern physics.

LO 5. To present IT projects, demonstrate entrepreneurship skills, observe a culture of academic integrity, critically evaluate and interpret information in the field of ICT, ecology, economics and law.

LO 6. Apply methods of analysis of the applied field at the conceptual, logical, mathematical and algorithmic levels.

LO 7. To carry out professional communication in various forms in Kazakh, Russian and foreign languages to solve professional tasks in the field of ICT.

LO 8. Use technologies, principles of organization and functioning of the Internet, analyze threats to information security.

LO 9. Evaluate and select modern operating environments and ICTs for

informatization and automation of solving applied problems and creating IS.

LO 10. Plan the work of an IT project, take part in the implementation, adaptation and customization of software and applied, as well as in scientific research.

2 General characteristics of the educational program (relevance, features, competitive advantages, uniqueness, stakeholders, etc.).

The creation of the information and communication infrastructure of the digital economy of the future requires good specialists in the field of software engineering at the bachelor's, master's and highly qualified scientific personnel.

But, the need for competent specialists in this field far exceeds the capabilities of universities to prepare these specialties.

At the same time, the qualification requirements imposed by employers in most cases are much more than the competencies that a student receives within the walls of a university.

These circumstances determine the relevance of developing and improving the educational program for training programmers of a wide profile at the bachelor's level.

"Software engineering" is the subject of professional activity of specialists in software development and management of large-scale ICT projects.

EP "Software Engineering" in the direction 6B061 Information and Communication Technologies is aimed at meeting the needs of society for qualified personnel in the field of information technology and computer technology, capable of solving complex engineering tasks.

The competitive advantages of a graduate of the OP "Software Engineering" are:

- in-depth knowledge of modern and advanced methods of software development, testing and operation (DevOps);

- ability to apply the acquired knowledge at all stages of application development, from server logic to client code running directly on users' devices.

- ability and readiness the ability to analyze big data using artificial intelligence;

The proposed project of the educational program contributes to the acquisition by students of a large number of trending professional skills, thus allows them to provide employment and high wages.

Stakeholders are IT companies, large commercial and industrial enterprises, oil companies, banks, etc.

3 Competence model (portrait) graduate **3.1** Areas of professional activity

Areas of professional activity of graduates of the EP "Software Engineering" in the direction 6B061 Information and communication technologies:

- the sphere of industrial software production;

- the sphere of material production (industry, agriculture and forestry, construction, etc.)

- non-productive sphere (healthcare, education, housing and communal services, trade, etc.)

3.2 Types of professional activity

Types of professional activity of graduates of the EP "Software Engineering" in the direction 6B061 Information and communication Technologies:

- design activities in design organizations, IT companies, telecommunications companies as the head of the research and development department, developer and analyst of software and applications, software engineer;

- production and technological activities at industrial enterprises, telecommunications companies, companies for the design and assembly of digital devices, in financial organizations as the head of the production process, head of services and departments in the field of information and communication technologies, an engineer for automated control systems, an engineer for network security;

- research and experimental research activities in research institutions, design and scientific production organizations as a senior researcher, head of a research group, software engineer, electronics engineer;

- organizational and managerial activities in public administration bodies, in the service sector, administrative management, in business structures as an information security administrator, head of the project management department, an expert analyst, an engineer for automated management systems.

3.3 General education competencies

After successful completion of this program, the student will possess the following general education competencies:

1) assesses the surrounding reality on the basis of worldview positions formed by knowledge of the fundamentals of philosophy, which provide scientific understanding and study of the natural and social world by methods of scientific and philosophical cognition;

2) interprets the content and specific features of the mythological, religious and scientific worldview;

3) argues his own assessment of everything that is happening in the social and industrial spheres;

4) shows a civic position based on a deep understanding and scientific analysis of the main stages, patterns and peculiarities of the historical development of Kazakhstan;

5) uses methods and techniques of historical description to analyze the causes

and consequences of events in the history of Kazakhstan;

6) assesses situations in various areas of interpersonal, social and professional communication, taking into account basic knowledge of sociology, political science, cultural studies and psychology;

7) synthesizes knowledge of these sciences as a modern product of integrative processes;

8) uses scientific methods and techniques of research of a specific science, as well as the entire socio-political cluster;

9) develops his own moral and civic position;

10) operates with social, business, cultural, legal and ethical norms of the Kazakh society;

11) demonstrates personal and professional competitiveness;

12) applies in practice knowledge in the field of social and humanitarian

13) selects methodology and analysis;

14) summarizes the results of the study;

15) synthesize new knowledge and present it in the form of humanitarian socially significant products;

16) enters into communication in oral and written forms in Kazakh, Russian and foreign languages to solve the problems of interpersonal, intercultural and industrial (professional) communication;

17) carries out the use of language and speech means based on the system of grammatical knowledge; analyze information in accordance with the communication situation;

18) assesses the actions and actions of the communication participants.

19) uses various types of information and communication technologies in personal activities: Internet resources, cloud and mobile services for the search, storage, processing, protection and dissemination of information;

20) builds a personal educational trajectory throughout life for selfdevelopment and career growth, focus on a healthy lifestyle to ensure full-fledged social and professional activities through methods and means of physical culture;

21) knows and understands the basic laws of the history of Kazakhstan, the basics of philosophical, socio-political, economic and legal knowledge, communication in oral and written forms in Kazakh, Russian and foreign languages;

22) applies the acquired knowledge for effective socialization and adaptation in changing socio-cultural conditions;

23) has the skills of quantitative and qualitative analysis of social phenomena, processes and problems.

3.4 Basic competencies

After successful completion of this program, the student will have the following basic competencies:

1) demonstrate knowledge and understanding in the field being studied based on advanced knowledge in the field being studied;

2) apply knowledge and understanding at a professional level, formulate

arguments and solve problems of the studied area;

3) to collect and interpret information for the formation of judgments taking into account social, ethical and scientific considerations;

4) apply theoretical and practical knowledge to solve educational, practical and professional tasks in the field under study;

5) learning skills necessary for independent continuation of further education in the field of study;

6) know the methods of scientific research and academic writing and apply them in the field under study;

7) apply knowledge and understanding of facts, phenomena, theories and complex dependencies between them in the field under study;

8) understand the importance of the principles and culture of academic integrity.

3.5 Professional competencies

After successful completion of this program, the student will possess the following professional competencies:

design activity:

- the ability to conduct a pre-design survey of the design object, a system analysis of the subject area, their interrelations;

- ability to conduct modeling of processes and systems;

- the ability to assess the reliability and quality of the functioning of the design object;

production and technological activity:

- ability to create application software: decision support systems, automated control systems, intelligent systems, multimedia systems, business software products, web portals, databases and knowledge, diagnostic and certification software systems, information security software in computer systems and networks;

- ability to use languages describing architecture and interface, templates, notations, strategies;

- the ability to master the methods of parallel data processing;

- the ability to own methods and tools for interactive data visualization;

research and experimental research activities:

- the ability to collect, analyze scientific and technical information, domestic and foreign experience on the subject of research;

- the ability to justify the correctness of the chosen model by comparing the results of experimental data and the solutions obtained;

- ability to use mathematical methods of processing, analysis and synthesis of professional research results;

organizational and managerial activity:

- the ability to form technical specifications, the ability to plan and manage the development process;

- ability to evaluate and choose a methodology for designing objects of professional activity;

- ability to assess the degree of difficulty, risks, consequences of organizational and managerial decisions.

4 Base of professional practices (all types of practices)

The training practice takes place on the basis of the Department of "Information Systems" of the S.Seifullin Kazakh Agrotechnical in the first year.

Practical training takes place on the basis of public or private organizations in IT departments after the 2nd, 3rd courses and after the first semester of the 4th course lasting 4-6 weeks.

N⁰	Name	Telephone	Mail	Website
1)	Astana IT, Astana, Saryarka Avenue, 31/2	+7 775 188 8007	info@astana- it.kz	http://astana-it.kz
2)	IT Holding Samgau; Astana, Imanbayeva str., 5 V	+7 717228 1815 +7 777003 3311	Info@samgau .com	http://samgau.co m
3)	Oul Kazakhstan Association of IT Companies, Astana, Kabanbai Batyr Avenue, 6/5	+7 717292 5552		http://itk.kz
4)	JSC "National Infocommunication Holding "Zerde", Astana, Almaty street, 1	+7 717257 0778		http://zerde.gov. kz
5)	JSC "Transtelecom", Astana, Abay Avenue, 13	+7 717260 0029		http://ttc.kz
6)	Computer Academy "Step", Astana, Aliimoldagulova Street, 23	+7 717 231 3328 +7 717 291 1458	astana@itstep. org	http://astana.itste p.kz
7)	TOO "Net.com ", Astana, Kazhymukanamunaytpasova Street, 22	+7 717 247 8177		http://netcom.kz
8)	Corporate Business Systems, Astana, Kabanbai Batyr Avenue, 3	+7 727 262 2218		http://cbs.kz
9)	InesSoft LLP, Astana, MukhtarAuezova Street, 8	+7 717 272 8510		http://inessoft.kz

Pre-graduate practice takes place at the Department of "Information Systems".

10)	Training Center "Expert-A", Astana, Bauyrzhanamomyshuly Avenue, 2/1	+7 771 909 4456 +7 717 262 5266	info@expert- a.kz	http://expert-a.kz
11)	Somnium Astana LLP, Astana, Kunaeva str., 12/2,	+7 7172 68-98-14;		
12)	JSC "AstanaInavation"			
13)	JSC "Electronic Finance"			
14)	JSC "National Information Technologies" Astana, Astana, Orynbor str., 8	+7 7172 74-10-70; +7 7172 74-10-81;		
15)	Republican Association "Union of Farmers of Kazakhstan"	87019996661; 87172509928; Ibrayev Serik	ibrayev.sn@g mail.com	www.sfk.kz
16)	"PLATONUS" LLP	87055166919; 87172472525; Aidar Manas	ISPUSINOV @PLATONU S.KZ	PLATONUS.KZ
17)	Global Services International, Mukhitov Azat	87077555273;	maz@gse.kz	
18)	TerraPoint LLP	87015333406;	Aida_mullash eva@mail.ru	Mullasheva Aida Financial Director

		Total w	orkload
N⁰	Name of cycles and disciplines	in academic	in academic
		hours	credits
1	2	3	4
1	General Education Disciplines (GER) cycle	1680	56
	Mandatory component	1530	51
	History of Kazakhstan	150	5
	Philosophy	150	5
	Foreign language	300	10
	Kazakh (Russian) language	300	10
1)	Information and communication	150	5
	technology		-
	Socio-political knowledge module	240	
	(sociology, political science,	240	8
	cultural studies, psychology)	240	0
	Physical education	240	8
2)	A university component and/or an optional component	150	5
2	Cycle of core and core disciplines	At least 5280	At least 176
	(DB, PD)		
1)	A university component and/or an		
	optional component		
2)	Professional practice		
3	Additional training (VET)		
1)	Optional component		
4	Final certification	At least 240	At least 8
	Total	At least 7200	At least 240

5 Structure of the undergraduate education program

Appendix 1.

Academic Calendar

	ACADEMIC for 2023-202 by levels (BAC	Approve Chairman of the Academic Council NJSC "Seifullin KATIUS " Tireuov K.M. <u>2023 y.</u> CCALENDAR 4 academic year 5 of training HELOR)
1	Presentation week.	1 course
	registration for disciplines	August 28 - 31
2	I semester	September 1 - December 15
3	Constitution day	August 30
4	Knowledge Day	September 1
5	Republic Day	October 25
6	Independence Day	December 16
7	Exam session	December 18 - 29
8	Passing FX	December 18 -29
9	New Year's Holiday	January 1, 2
10	Holidays	January 1-26
11	II semester	January 29 to May 10
12	International Women's Day	March 8
13	Holiday Nauryz	March 21,22,23
14	Holiday of unity of the people of Kazakhstan	May 1
15	Defender of the Fatherland Day	May 7
16	Victory Day	May 9
17	Exam session	from May 13 to May 24
18	Passing FX	May 13 - 31
19	Registration for the summer semester	May 27 - 31
20	Final examination	until June 30
21	Summer semester	from June 3 to July 12
22	Holidays	from May 27 to August 31
23	Capital Day	July 6
	Practice*	

Approved by the Academic Council of NJSC «S. Seifullin KATIU», protocol № 16, 29.05. 2023 y.

Note: If it coincides with a weekend or a holiday, the lesson begins on the next working day.

* Types and terms of professional practice are determined by the working Curriculum of Educational Programs.

Appendix 1 to the Academic Calendar

		Apper	ndix 1 to the Approved b	Academic v the Acad	Calendar lemic Counc	il of the NJS	SC "S.Seifullin H	CATIUS", Protocol	№16. of 26.05.20	23 v.	
Schedule of the educational r	process for the 2023 2	024 acadomia	voor for the	aducation	al program	Commutant			1410,0120.00.20.		
Schedule of the educational p	nocess for the 2023-20	024 academic B	BACHELOR	education	iai program	Computer S	ystems and voc	ational I rai faculty			
September October November December Janu	ary Februa	ary	Mart		April		May	June		July	August
1 8 15 22 29 6 13 20 27 4 11 18 25 1 8 15 1 8 15 22 29 6 13 20 27 4 11 18 25 1 8 15 1 8 15 22 29 6 13 20 27 3 10 17 24 1 8 15 22 29 5 12 19	22 29 5 12 26 2 9 16 1	19 26 4 23 1 8	11 18	25 1 29 5	8 15 12 19	22 29 26 3	6 13 20 2 10 17 24 3	7 <u>3</u> 10 17 1 7 14 21	24 1	8 15 22 29	5 12 19 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	21 22 23 24 2	25 26 27	28 29	30 31	32 33	34 35	36 37 38 3	9 40 41 42	43 44	45 46 47 48	49 50 51 52
	H •/EP •/EP •/EP •/	/EP •/EP •/EP	•/EP •/EP	•/EP •/EP	•/EP •/EP	•/EP •/EP •	EP E/P E/P E/T	D/H S/H S/H S/H	S/H S/H	S/H H H H	ныны
	B057 Information tech	nnologies. Educa	ational program	n 6B06102 -	"Business Inf	ormatics", 4 y	ears		-	1 1 1 1 1 1	
1 PW • • • • • • • • • • • • • • E/P E/P H H H	H • • •	• • •	••	• •	• •	• •/EP •	EP E/P E/P P/TE	D/H S/H S/H S/H	S/H S/H	S/H H H H	HHHH
	·· • • •	• • •	•••	• •	• •	• •	• E/P E/P P/TE	MT MT S/IP/ S/IP/	S/H/MT S/H/MT	F S/H H H H	нннн
III PW • • • • • • • • • • • • • • • • • • •	н • • •						• E/P E/P P/TE	/ IP S/IP/ S/IP/	IT S/IP/MT S/H/MT	S/IP IP H H	нннн
IV PW IP IP IP IP IP IP • • • • • • • • E/P E/P H H •	• • • •	• • •	• U/IP	U/IP U/IP	U/IP U/IP	U/IP U/IP U	/IP E/P FE FI	E FE FE FE	FE		
	B057 Information techn	nologies. Educati	ional program	6B06103 - '	'Computer En	gineering", 4	years	lastari	1	1	
	n • • •	••••	•••	• •	•••	• •/EP •	EP E/P E/P P/TI	D/H S/H S/H S/H S/IP/ S/IP/	S/H S/H	S/H H H H	НННН
	H • • •	•••	•••	•••	•••	• •	E/P E/P P/TD	MT MT S/IP/M	IT S/H/MT S/H/MT	S/H H H H	нннн
	ⁿ • • •	• • •	•••	• •	• •	• •	• E/P E/P P/TD	/ IP S/IP/ S/IP/ MT MT S/IP/M	IT S/IP/MT S/H/MT	^{S/H} H H H	нннн
IV PW • • • • • • • • • • • • • • E/P E/P H H •	• • • •	• • •	• U/IP	U/IP U/IP	U/IP U/IP	U/IP U/IP U	/IP E/P FE FI	E FE FE FE	FE		
B0 III PW • • • • • • • • • • • • • • • E/P E/P H H •	S7 Information technolog	• • • •	Drogram 6B0 U/IP	6103 - "Cor U/IP U/IP	U/IP U/IP	ering" (SOPR), 3 years /IP E/P FE FI	E FE FE FE	FE	1 1 1 1 1	
	B057 Information	technology. Edi	ucational prog	ram 6B0610	1 - "Software	engineering"					
I PW • • • • • • • • • • • • • • P/E P/E H H H	н • • •	•••	•••	• •	•••	• •	P/E P/E P/E D	S/H S/H S/H	S/H S/H	S/H S S S	S S S S
П PW • • • • • • • • • • • P/E P/E H H H	н • • •	• • •	••	• •	• •	• •	P/E P/E P/TE	D/H S/H/ S/H/ MT MT S/H/M	T S/H/MT S/H/MT	S/H S S S	s s s s
III PW • • • • • • • • • • • • • • • P/E P/E H H IP	IP • • •	• • •	• •		• •		• P/E P/E P/TE	D/H S/H/ S/H/ S/H/M	T S/H/MT S/H/MT	S/H S S S	S S S S
IV PW • • • • • • • • • • • • • • P/E P/E H IP IP	IP IP IP IP U	/IP U/IP •	••	• •	• •	• •	P/E FE FI	E FE FE FE	FE		
	57 Information technology	y. Educational p	orogram 6B061	15 - "Digita	l agricultural :	systems and co	mplexes"	P/ 1 1	1 1		
	н • • •	• • •	•••	• •	•••	•••	P/E P/E TI	EP/S S/H S/H	S/H S/H	S/H S S S	S S S S
II PW • • • • • • • • • • • • • P/E P/E H H IP	IP • • •	• • •	•••	• •	• •	• •	P/E P/E P/TE	MT MT IP/S/ IP/S/MT	T S/H/MT S/H/MT	S/H S S S	S S S S
III PW • • • • • • • • • • • P/E P/E H H IP	IP IP IP •	• • •	•••	• •	• •	• •	P/E P/E P/TE	0/H IP/S/ IP/S/ MT MT IP/S/M	T S/H/MT S/H/MT	S/H S S S	S S S S
Conventions PW presentation week	S summer seme	ster									
 theoretical training 	FE final examinat	tion									
TD enrollmentin disciplines	EP educational pr	ractice									
E examination session	IP industrial prac	ctice									
H holidays	U undergraduate	e practice									
							Sector Inc.				
							1.1				

Appendix 2

Working curriculum

1				The Ministry of Agriculture of the Republ	ic of Kaza	khstan																			
				NC JSC "S Seifullin Kazakh Agrotechnical R	esearch U	niversity	e#									-	-	-		1			1		-
	(Consider	red at the meetir	12				APP	ROVED									1	1				1		
		of Acad	lamic Council					Mambar of the	Board														-		
	of the	Univers	sity				Vi	ce-Rector for Ara	demic 4ffs	irs															
	ti un	Destacal	No					NC ISC	"KATHE						-	-	-	-		1			-		-
2			20 1					Abi	shave P D						-		-								-
		-	y-						10 T								-	-							-
				WORKING CURRICULING			5.533		.vy.								-				-				
<u>a</u>				for 2022 2022 and anis mark												-	-	-					-		-
				For the modular education program "Software													-				-				
-				For the modular education program Sonware	Tafaanat	ing torke										-	-	-		-	-		-		-
5			0	y the speciality/group of educational programmes Bos / -	- Inkonigat	ion tech	lology										-				-				
				Elegree, Bachelor dama Room of admentions: Built time (bachelor damas	-)	~										-	-			-	-				-
8. 				Form of education. Full-time (bachelor + year	s) settlest	e1 .									-		-	_		-					-
				Entry year: 01-09-2025			1					10 0						-					-		
<u> </u>		-			-	-	C	test in the see	damia				Manuali	an of house				-	Dista	huding .	f		- demin	a sector of	<u> </u>
		a a				-	Con	nor in the aca	uemic			-	Incore	er or nours		Inde	andari	1 1	Distr	2	a credit	per ac	ademic	period	
a	Mandala anna		5 +	Cubinst many	in .	mic	2 37	period	-	ŀ	307	0	1455100	WORK		mue	Jenuen	1	ourse 2	2 00	arse A	5 5	e c	4 00	l o
1	Module name	a a d	e e	Subject name	lits	v der	ns	Pare	ec ec	-	'n	ora	tic	on	tic	å t	e t	-	2	3	4	3	0		0
polo		vol	po		ca	ca	Xal	tiat	ap	ota	5 PC	ab	rac	tuc	rac	del	de	0	Nur	nper of v	veeks in	the aca	demic p	eriod	
No	ļ.	00	O S		A	A is a	чш	Det	H à à	F	e L	1 2 7	d a	s e s	d a		5 2 6	\$ 15	15	15	15	15	15	15	15
			1			-	Ge	neral modules				-			-			-							1
1	-	0 0	IYa 1100	Foreign language	5	1	1	8	2 3	5/150		18 8	45	3	88 -	20	85	5.0	8	- S - 3	-	32	2		2
2		0 0	KRYa 1100	Kazakh (russian) language	5	1	1			5/150		3	45			20	85	5.0	-						
3	Language	A C	KRYa 1100	Kazakh (russian) language	5	2	2	3	£ 3	5/150		16 8	45	12. 	1	20	85	1	5.0	- A - A	-	S	1 3		2
4		D C	IYa 1100	Foreign language	5	2	2			5/150			45		-	20	85		5.0						
5		BS ES	6 POIYa 3273	Professionally-oriented Foreign Language	2	5	5	1	£ 3	3/90		16 8	30	16	1	12	48	1	š.	16 1	-	3.0	8 8		ŝ.
6		BS ES	1000	English for special purposes	~	~	5			3/90			30			12	48					0.0			
7		DE C	IKT 1100	Information and communication technologies	5	1	1		£ 3	5/150	15	30.0	10	12		20	85	5.0	÷.	16 I	-	2	1 1		ŝ.
8		D SE C	PS 1101	Political science and sociology	4	1	1			4/120	15		30			16	59	4.0							ĺ.
9		GE C	KP 1102	Cultural studies and psychology	4	1	1	1	£ 3	4/120	15	14 3	30	2		16	59	4.0		14 1		¥.	1		
10	General education module	D C	FK 1107	Physical education.	2	1		1		2/60			30			8	22	2.0							0
11		D D C	FK 1108	Physical education.	2	2	14	2	£ 3	2/60		16 - 3	30			8	22		2.0	4 1		¥.	1. 3		<u> 1</u>
12		DE C	FK 2110	Physical education.	2	3		3	1	2/60		3	30			8	22			2.0					()
13		DE C	FK 2111	Physical education.	2	4	1	4		2/60	22	10	30			8	22	100	8	10	2.0	222	1		12
14		OE C	IK 1118	History of Kazakhstan	5	2	2			5/150	15	1	30			20	85		5.0						6
15		DE C	Fil 2100	Philosophy	5	3	3		£ 3	5/150	15	- S	30	12		20	85		8	5.0		2	11 12		8
16		D ES	0EP 2113	Basics of economics and law	100	6	3			5/150	15	18	30			20	85								
17	Social-political	DE ES	Pre 2119	Entrepreneurship			3		£ 3	5/150	15	- A - B	30			20	85					22	11 12		
18		ES ES	OAK 2121	Basics of anti-corruption culture	5	3	3			5/150	15	1	30			20	85			5.0					0
19	l l	DE ES	EUBZII	Ecology and life safety fundamentals			3		2 B	5/150	15	- S	30	12		20	85					S	11 12		12
20		ES ES	MNI 2123	Methodology of academic research			3			5/150	15	1. 3	30			20	85								
		er angeben	3		A	lodules	of spe	cialty/educatio	n progra	amm	22	38 8	5	<u>22</u>	8	Sec.	1	35. L	÷	3	8	22	8	ŝ.	1919 2019
21		BS C	ASDP 1236	Algorithms, data structures and programming	5	1			1	5/150	15	30.0				20	85	5.0							
22	l I	BSC	OOPC 1247	Object-oriented programming (C #, Java)	7	2	2	3	2	7/210	30	45.0		12	1255	28	107		7.0	- S - 3		S	11 12		2
23	Alexandra for and an analysis and a	BS U	UP 1272	Educational practice	1	2			1	1/30					30				1.0						
24	Algorithmization and programming module	BS C	MOPS 2245	Machine-Oriented C / C ++ Programming	6	3	3		£ 3	6/180	15	45.0		1		24	96			6.0		¥.	1 1		12
25		BS ES	PYaP 2259	Programming in Python	-		4			5/150	15	30.0				20	85				5.0				0
28		BS ES	SYaP 2287	Modern programming languages	1 0	4	4	3	12 D	5/150	15	30.0	10	1		20	85			1. 1	5.0	S	1 1		8
27		BS U	MOIT 1239	พลเทยทเลเเตลา เชินกับสิเตที่ อา ทักษ์ที่กิลเตก	5	2	2			5/150	15	1	30			20	85	1	5.0		1				
28	l t	BS G	VSKN 2240	Probability and Statistics in Computer Science	5	3	3	8	2 3	5/150	15	8 8	30	12		20	85		8	5.0		S.	1 8		1
29		BS G	Fiz 2295	Physics	3	4	4			3/90	15	15.0				12	48				3.0				
30	Physical and mathematical	BS ES	SMAD 4268	Statistical methods of data analysis			7		1	5/150	15	30.0				20	85		8	13 1		S.	1 2	12.12	Š.
31		BS ES	SDI 4290	Statistics for IT	5	7	7			5/150	15	30.0				20	85			1		-		5.0	F
32		BS ES	MMISM	mathematical modeling of technical systems in					8	5/150	15	30.0		S.		20	85		2	1		8	1		Sec.
A			1057	Masi ak		0	L												_						5.0

Annex 2 (continued)

A	8	C D	E	F	G	н	1.4	1	ĸ	1.1	м	N	o	P	Q	R	5	т	0	v	w	x	Y I	z	AA
55 31		BS ES	SDI 4290	Statistics for IT	1		7			5/150	15	30.0		1	6 6	20	85	- E		12 - E			0	0.0	8
56 32	1	BS ES	MM13M	Mathematical modeling of technical systems in	-				8	5/150	15	30.0			1	20	85								= 0
57 33		BS ES	SMP 4286	Specialized Mathematical Packages	9	0	18 8	1	8	5/150	15	30.0			5 S	20	85	(- S	3	8 8			1 3		0.0
58 34		BS ES	AKOS 2277	Computer architecture and operating systems	5	2	3			5/150	15	30.0			1	20	85			5.0					
59 35	Design of software systems	BS ES	CSAK 2291	Digital circuitry and architecture of computer	~	~	3		8	5/150	15	30.0		3	1 (A)	20	85	(- S		0.0			1 3		8 - 3
60 38	Design of software systems	BS C	IM 4242	Simulation modeling:	5	7	7			5/150	15	30.0			3	20	85							5.0	
61 37		AS C	PAPS 4324	Design and architecture of software systems	5	7	7		5	5/150	15	30.0		3	6 8	20	85	(- S		1			1 2	5.0	S 3
62 38		BS C	BD 2246	Database	5	4			4	5/150	15	30.0				20	85				5.0				
63 39		BS	PRMP 3294	Design and development of mobile application	7	5	5		8	7/210	30	45.0			<u>i</u> 8	28	107	1 8		18 - D		7.0			<u>a</u> 3
64 40	and a state of the second s	BS ES	2275	Software development technologies and standards	5	8	6			5/150	15	30.0				20	85						5.0		
65 41	Software development	BS ES	ISRP 3288	Tools and programming			6		ŝ.	5/150	15	30.0		2 <u></u> 1	5 <u>3</u>	20	85	E 8		2 9		<u> </u>			<u>à</u> 3
66 42		ASG	IGAK 2316	Engineering graphics (AutoCad, Compas)	5	4	4			5/150	15	30.0				20	85		_	5 5	5.0		\vdash		
67 43		AS G	2045		5	5			2	5/150	15	30.0		2	<u> </u>	20	85	2 8	-	8 9	<u> </u>	5.0	1.50		<u>8 3</u>
68 44		AS C	TPO 3317	Software testing	5	6	6		2	5/150	15	30.0				20	85	r - 6			<u> </u>		5.0		-
45		BS ES	RDIV 2280	Development for the Internet of Things	5	4	4		ć.	5/150	15	30.0		2	5 S	20	68	2 8	-	1	5.0		⊢		<u>a</u> 3
10 40		B3 E3	PDI 2263	Programming for Io1			4		2	5/150	10	30.0		2 3	- 8	20	00	/ 3		a a	5556		<u> </u>		
71 4/		DO EO	TMO 4205	Machine learning technology	5	7	7		<u>G</u>	5/150	10	30.0		<u> </u>	2 3	20	00		-	8 - 2			F	5.0	<u> </u>
72 40	High conformation computing	DO EO	NCID 4200	Machine learning technology			0		8	5/150	15	20.0	-	5	e 😚	20	00	2 9			<u> </u>			22005	. .
73 43	rigit performance computing	DO EO	ONIC 4209	Pasion of neural networks	5	8	0		6	5/150	15	20.0				20	05		-				1		5.0
75 51		49 0	VPIAD 4312	Visual programming and data mining	5	7	7		ŝ	5/150	15	30.0	-	S 3	e 😚	20	25	2 8		8 8	-			5.0	5
75 57		45 0	MKPP 4321	Microprocessor complexes and industrial	5	7	7		05	5/150	15	30.0		.	3 <u>3</u> 3	20	85		-	-				5.0	-
77 53		AS C	PP 4313	Parallel programming	5	8	8		ŝ	5/150	15	30.0		8 8	s (s	20	85	6 8		8 8			1 2	0.0	5.0
78 54		BS 0	ST 3244	Network technologies	5	5	5		0	5/150	15	30.0			1	20	85		-		-	5.0		-+	0.0
79 55		BS ES	31800	Modern database technology (Oracle)		-	1		5	5/150	15	30.0		8	8 8	20	85	3 8		8 8			1 2		5 3
80 58		BS ES	TBD 3284	Database technologies	5	5	-		5	5/150	15	30.0		-	- 2	20	85				<u> </u>	5.0			
81 57		BS U	TSVK 3243	Server virtualization and containerization	5	6	6		0	5/150	15	30.0		8	8 - Q	20	85	6 8		8 8			5.0		5 3
82 58	Network Technologies and Information	BS ES	ITEK 3261	Internet technologies and e-commerce			6			5/150	15	30.0			1 12	20	85								
83 59	security	BS ES	RIP 3293	Internet application development	5	6	6		ŝ	5/150	15	30.0		3	8 8	20	85	1 8		8 8			5.0		5 3
84 60		AS 0	SOS 2318	Network operating systems	5	4	4			5/150	15	30.0			1 2	20	85				5.0				
85 61		AS C	WP 3320	Web development	5	5	5		8	5/150	15	30.0		8	1	20	85	() (1	1	5.0			S 3
86 62	()	AS C	IB 3322	Information Security	5	6	6			5/150	15	30.0			1.12	20	85						5.0		
87 63	1	AS C	PP 2325	Internship	2	4			8	2/60				2	60			£ - 8			2.0		1 3		S 3
88 64	Professional eractions	AS C	PP 3326	Internship	5	6				5/150					150								5.0		
89 65	Professional practices	AS C	PP 4327	Internship	6	8			8	6/180		12 I		3	180		nin.	(- S		1. I					6.0
88 08		AS C	PP 4328	Pre diploma practice	1	8				1/30					30										1.0
91	V 80		22	46 (A) (A) (A)	ar g	Addition	nal modu	les beyond	qualifica	ation		-3.2		896 - Y	36 - 53	e	87 - 3-	n 90	6	32 8	2	54 - 4	.6 QS		2
92							Mod	ules of choic	e																
93				4 m 2001	<u> </u>	(c)	Scient	fically resea	rch	a ()		1			o 14	-	10 20	-	00	50		00	00	00	
94	Weekly	average	workload at	hours	50		40			4000	00	20	450	0	0	224	000	- 25	47	00	04	0	OV O	- Ou	44
95 1	Ger	Care Care	ucation subj	ecisioen)	30	-	10	4	0	1680	30	30	400	0	0	224	000	25	17	12	2	0	0	0	0
96	15	COIP :	subjects(GER	2EB/IIC)	01		0	4	0	1030	10	30	420	0	0	204	001	23	0	0	2	0	0	0	0
97	0	Flor	otivos/GED/E	ev (UC)	5		1	0	0	150	15	0	20	0	0	20	05	0	0	5	0	0	0	0	0
20 2		Baco	requirement	(PS)	112		19	0	1 A	2360	245	600	90	0	20	444	1951	5	12	16	19	20	15	45	10
100		Core	subjects/BS/	(03)	0		10	0	4	3300	345	000	0	0	0	444	1051	0	0	0	0	20	0	0	0
101	1	Iniversit	v component	(BS/LIC)	59		- a	0	2	1770	195	300	80	0	30	232	953	5	13	11	8	12	5	5	0
102		Fie	entives/BS/ES	3	53		9	0	2	1590	150	300	30	0	0	212	898	0	0	5	10	8	10	10	10
103 3	Pr	ofessio	n requireme	nts(VRS)	64		9	0	1	1920	150	300	0	0	420	200	850	0	0	0	12	10	15	15	12
104		Core	subjects(VRS	/CS)	14		0	0	0	420	0	0	0	0	420	0	0	0	0	0	2	0	5	0	7
105	U	niversity	component()	(RS/UC)	50		9	0	1	1500	150	300	0	0	0	200	850	0	0	0	10	10	10	15	5
105		Elei	ctives(VRS/E	S)	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
107	1 (1	fotal on	curriculum		232		13 3	4	5	6960	585	930	540	0	450	868	3587	30	30	28	32	30	30	30	22
108 4	011		Additional c	ourses										Number	of cred	lits	1	Semeste	er	Num	ber of h	ours	Num	per of w	eeks
109 5	5			Module of final certification (MoFC)	8								6	8		5			1	240.0				
110				Total including FCS											240						7200.0				

Appendix 3. Matrix of achievability of the formed learning outcomes according to the educational program with the help of academic disciplines

N⁰	Name of the	Brief description of the discipline	Numbe						Gen	erated	learnin	g outco	omes
	discipline		r	L	L	L	L	L	L	L 07	L	L	L
			credits	01	02	3	4	5	6	07	8	9	10
		Cycle of general education disciplin	es Univers	ity cor	npone	nt/Cor	npone	nt of c	hoice				
1	Methodology of	The study of various techniques	5					v		v			v
	research	and methods of scientific research: analysis synthesis and design in General											
	researen	Determination of the purpose, objectives											
		and factors affecting the design. Ability											
		to apply research results in design. Work											
		Preparation of the concept.											
2	Basics of anti-	The discipline examines the	5					v		v			
	corruption	theoretical and methodological											
	culture	foundations of the concept of "corruption" and examines the											
		improvement of socio-economic relations											
		of the Kazakh society as a condition for											
		combating corruption, psychological											
		formation of anti-corruption culture.											
		features of formation of anti-corruption											
		culture of youth, ethnic features of											
		formation of anti-corruption culture,											
		corruption in various spheres. Discipline											
		allows you to learn about legal											
2	D : (responsibility for corruption offenses											
3	Basics of	The discipline promotes						v		v			
	law	theory and methods of research, the basis											
		of public production and forms of public											
		economy, the mechanism of functioning											
		and income of the firm, national											
		economy. Give an assessment of											
		economic growth and instability of the											
		market economy, inflation and											
		economic instability. Demonstrate											
		knowledge and skills in the financial and											
		monetary credit system in the national											
		economy and economic security. To											
		state and law, the basics of constitutional,											
		administrative, civil, labor, family,											
4	Entremple	criminal law.	5										
4	Entrepreneursnip	conceptual apparatus that defines the	3					v		v			
		essence of entrepreneurial activity, shows											
		the role and place of small enterprises in											
		of the economy outlines the basic											
		principles and reveals the content of the											
		business plan of business entities. The											
		organizational forms of entrepreneurial											
		and termination of activity are											
		considered. Cardiological aspects and the											
		formation of tolerance in the process of											
		organization and functioning of business structures are taken into account											
5	Ecology and life	The laws of ecology, as a	5					v		v			
	safety	theoretical basis for nature conservation											
	fundamentals	and rational nature management, the											
		environmental factors and habitat											
		conditions, the biosphere-noosphere											
		concept of V.I. Vernadsky, concepts and											
1		concepts of sustainable development.	1	1	1	1	1	1	l	1			

		Cycle of basic disc	iplines Uni	iversit	y com	oonent						
6	Algorithms, data	The course studies abstract data	5	v	v	v			v			
	structures and	types and methods for their	-						-			
	programming	implementation in a high-level language,										
		taking into account the principles of										
		object-oriented design of programs. We										
		consider data processing algorithms of										
		complex structure, including graphs and										
		trees. also elements of the theory of										
		formal languages, grammars and										
		automata, as well as questions of the										
-	D 1	complexity of algorithms.	~									
7	Databases	Three-level DBMS architecture. General	5			v	v	v			v	v
		information about the Relational Data										
		model (RMD). Structural and integral										
		The manipulative part of the RMD.										
		Structured Ouery Language (SOL)										
		Optimization of the query execution plan.										
		Indexing. Database design . Overview of										
		DB description notations. CASE system.										
		Development of stored functions,										
		procedures, triggers. Overview of Nosql										
		technologies. Comparison of data access										
		technologies LINQ Nhibernate, ADO,										
		Entityframework, etc. Client-server										
	D 1 1 111	technologies	<u> </u>									
8	Probability and	Basic concepts of probability theory	5			v			v		v	
	statistics in	(Elements of combinatorics. Basic										
	science	concepts of probability theory Geometric										
	science	probabilities) Formulas for calculating										
		probabilities (Corollaries from the										
		theorems of addition and multiplication										
		of probabilities. Probability of occurrence										
		of at least one event. Poisson's formula).										
		Discrete random variables (Random										
		variables, their types. The law of										
		distribution of a random variable).										
		Continuous random variables The Law of										
		Large Numbers. Chebyshev's inequality.										
		Probability distribution function of a										
		characteristics of a continuous random										
		variable										
9	Simulation	leaving the production flow diagrams	5			v	v				v	v
ĺ.	modeling.	their mathematical models as objects of	5			•	•				•	
	0	management, determine the criteria for										
		the quality of functioning and the goals										
		of management; Choose a functional										
		automation scheme for a specific										
		technological process; develop										
		algorithms for centralized control of the										
10	Motherset: 1	coordinates of a technological object.	5			*-			*-			
10	foundation of	linear algebra Methods and typical	3	v		v			v		v	
	information	problems of analytical geometry										
	technologies	Methods and typical problems of										
	8	differentiation of functions, Methods and										
		typical problems of integration of										
		functions.										
11	Machine-	The discipline provides for programming	6	v	v		v		v			
	oriented	hardware-dependent parts of operating										
	programming in	systems, developing software										
	C / C ++	management functions for digital control										
		high-performance applications where it										
		is very important to take into account the										
		features of the C and C ++ environment										
		as tools for modeling computer tools.										
12	Object-oriented	The main approaches and principles of	7	v	v		v		v			
	programming	object-oriented programming in Java (C										
	(C#,Java)	#). The use of algorithmic structures,										
		technologies and methods of object-										
		oriented approach for analyzing and										
		modeling the subject area, as well as the										
		acquisition of object-oriented										

		various subject areas.											
13	Design and	Introduction to mobile	7	v	v		v		v				
	development of	application development. Basic OS											
	mobile	modules. Setting up the development											
	application	elements of user applications User											
		interface controls. Designing interfaces											
		for mobile devices and tablets. The											
		layout and fragment creation service.											
		Support for Bluetooth/Wi-Fi protocols.											
		Animation control Push potification											
		service. Managing threads and											
		asynchronous tasks. Animation based on											
1.4	NT . 1	keyframes. Interprocess communication.	~									* 7	-
14	Network technologies	Basic concepts, logical and physical principles of building computer and	5			v	v					v	v
	teennoiogies	telecommunications networks; principles											
		of interaction between computers and											
		network equipment at the hardware and											
		software level; basic knowledge of the											
		that can be applied at the beginning of											
		work as a network specialist; principles											
		of functioning of computer networks,											
		principles of interaction of network											
		elements, methods for calculating and building networks based on standard											
		equipment and software.											
15	Server	Server virtualization, virtualization at the	5			v	v					v	v
	virtualization	operating system level; application											
	and	virtualization; view virtualization.											
	technologies	Monontinic hypervisor architecture.											
	teennoiogies	hypervisor. Cross-platform software.											
		Oracle VirtualBox, Microsoft Hyper-V,											
		Windows starting with Windows Server											
16	Physics	2008, Red Hat KVM To form a system of fundamental	5			v			v				
10	T Hysics	knowledge in physics among students,	5			v			v				
		contributing to the effective solution of											
		practical problems of agricultural											
		production, as well as further personal											
		worldview and modern physical thinking:											
		to get acquainted with scientific											
		equipment and methods of physical											
		research, to acquire the skills of											
		apply the knowledge gained for the											
		correct interpretation of basic physical											
		phenomena.											
17	F 1.1.C	Cycle of basic dis	ciplines Co	mpone	ent of (choice							
1/	English for special purposes	The discipline is aimed at studying general scientific terminology and	3					v		v			v
	special purposes	terminology for the language of the											
		corresponding specialty in English, forms											
		skills in four types of communicative											
		activity: reading with a full											
		specialty, the ability to write an essay on											
		a specialty problem, the ability to listen											
		to authentic messages containing											
		protessional information, the ability to											
18	Computer	Modern computer hardware. X86	5		v	v	v					v	v
	architecture and	architecture: development history,	-										
	operating	hardware implementation, and assembly											
	systems	language. Linux operating system:											
		interface. Tools for developing and											
		debugging programs in the Linux OS.											
		The GNU toolkit. The Linux family of											
		operating systemsLinux: architecture and											
19	Introduction to	Representation of knowledge in	5	v	v	v					v		
	Artificial	intelligent systems. Algorithms for		Ĺ		'							
1	Intelligence	logical inference based on knowledge.											

		Representation of fuzzy knowledge. Decision making under conditions of incomplete certainty. Stages of development of expert systems. Modern Machine Learning. Problems of classification and regression. Evaluation										
		of the quality of machine learning algorithms. Clustering tasks. Search for outliers and anomalies in data.										
20	Tools and programming	Types of software development methodologies, depending on life cycle models: cascading, iterative (1- RIP; 2 - flexible methodologies: SCRUM, KANBAN, DSDM, MSF, ALM,XP. The RAD approach. The stage of logical design of the program. A systematic approach. A conceptual model. Subject area. Business modeling. Business process models and their types (graphical, simulation, executable and/or functional behavioral, informational.) Types of approaches to software development: structural; object-oriented.	5	v	v	v		v				v
21	Internet technologies and e-commerce	Internet technologies and e-commerce as an integral part of electronic business. Organizational and technological foundations of e-commerce on the Internet. Characteristics of objects and subjects of electronic commerce. E- commerce in the consumer market for goods and services: business-to- consumer technologies. Organization of interfirm interaction in e-commerce processes: business-to-business technologies. Features of mobile and television commerce. Problems and prospects for the development of e- commerce in Kazakhstan.	5		v	v		v		v		
22	Mathamatical	The second of second second string of s										
22	madeling of technical systems in MatLab	The essence of computer modeling of a complex system. Architectural construction of modeling complexes of dynamic systems. Modeling and analysis of dynamic processes in technical devices by the equivalent circuit method. Functional modeling of technical systems.	5	v		v		V	v			
23	Mathematical modeling of technical systems in MatLab Neural networks and their applications	 The essence of computer modeling of a complex system. Architectural construction of modeling complexes of dynamic systems. Modeling and analysis of dynamic processes in technical devices by the equivalent circuit method. Functional modeling of technical systems. Artificial neural networks. Architecture of artificial neural networks. A set of tools for creating, initializing, training, modeling and visualizing a network. Methods and algorithms for training artificial neural networks. Gradient learning algorithms. Algorithms based on the use of the conjugate gradient method. Application of neural networks for designing control systems for dynamic processes. 	5	v	v	v		v	v			
23	Mathematical modeling of technical systems in MatLab Neural networks and their applications Basics of Neural Networks	 The essence of computer modeling of a complex system. Architectural construction of modeling complexes of dynamic systems. Modeling and analysis of dynamic processes in technical devices by the equivalent circuit method. Functional modeling of technical systems. Artificial neural networks. Architecture of artificial neural networks. A set of tools for creating, initializing, training, modeling and visualizing a network. Methods and algorithms for training artificial neural networks. Gradient learning algorithms. Algorithms based on the use of the conjugate gradient method. Application of neural networks for designing control systems for dynamic processes. Introduction to the theory of neural networks. Models of learning a single neuron. Algorithms for learning networks. Genetic Algorithms. Selection of the optimal architecture of neural networks. 	5	v v v	v	•		v v	v v v			
22 23 24 25	Mathematical modeling of technical systems in MatLab Neural networks and their applications Basics of Neural Networks Programming for IoT	 The essence of computer modeling of a complex system. Architectural construction of modeling complexes of dynamic systems. Modeling and analysis of dynamic processes in technical devices by the equivalent circuit method. Functional modeling of technical systems. Artificial neural networks. Architecture of artificial neural networks. A set of tools for creating, initializing, training, modeling and visualizing a network. Methods and algorithms for training artificial neural networks. Gradient learning algorithms. Algorithms based on the use of the conjugate gradient method. Application of neural networks for designing control systems for dynamic processes. Introduction to the theory of neural networks. Methods of learning a single neuron. Algorithms for learning neural networks. Genetic Algorithms. Selection of the optimal architecture of neural networks. Arduino IoT and a set of functions; EEPROM library; Connection of the Arduino keyboard and mouse Arduino and memory card, LED arrays, Radio frequency identification (RDIF). 	5	v v v	v v v	•	v	v v	v v	v	v	

		File Input/Output. Reading lines with file iterators. Working with binary files. The numpy library for implementing mathematical objects and calculations. Functions and recursion. Range function. Sorting. Lambda functions.											
27	Professionally- oriented foreign language	To form the professional foreign language speech of future specialists to increase the level of professional competence, proficiency in a professional foreign language for the implementation of written and oral information exchange, further development of speech activity (reading, writing, listening and speaking - monologue and dialogic speech). Rules of speech behavior in accordance with situations of professional communication, depending on the style and nature of communication in the social, household and academic spheres.	3					v		v			v
28	Development for the Internet of Things	Introduction to the "Internet of Things" (IOT). Hardware: End devices- controllers, sensors, actuators. Network technologies and IOT: IPv4 and IPv6 protocols. Principles of connecting devices to the network and methods of transmitting information. Data processing in IOT: examples of data collected and processed in IoTsystems. Application of cloud technologies and service-oriented architectures in IOT. IV services, applications, and business models.	5	v	v		v				v	v	
29	Internet Application Development	Technologies for using web programming languages in client applications; technologies for using Node.JS in server-side applications; application of web application development tools; application of modern Webtechnologies for creating Internet applications. CMS layouts (Tilda, WordPress, Bitrix, Opencard). SEO principles.	5		V	V			v		v		
30	Modern Database Technologies (Oracle)	Modern database technologies. Purpose and basic principles of database management systems architecture. Theoretical bases of relational database management systems. Using the SQL language in application programs. The concept of an active database. Stored procedures and triggers. Basic principles of database structure design. Fundamentals of transactional processing in database management systems. Security of database management systems. Elements of DataWarehousing technology.	5		v	v	v		v	v			
31	Modern programming languages	provide algorithms for solving Algorithms for solving common data processing problems. Algorithms on graphs. Libraries of programs and classes. General characteristics of assembly languages. The solution of computational problems in assembler. The interaction of programs with the OS and modular programming. Features of programming in multiprogram and multitasking environments. Programming Wiindows applications.	5	v	v	v			v	v			
32	Specialized mathematical packages	Modern mathematical software: main types, capabilities, and areas of application. Programming languages and libraries of programs for numerical calculations. Specialized and universal math packages. Approaches to organizing the interface, command language. Computer algebra systems and universal numerical calculation systems (Mathematica Manle Matlab Mathcad)	5	v		v			v	v			

			1									
		Open source mathematical packages (Octave, Scilab, Sage, Axiom, Maxima).										
33	Statistics for IT	Methods for statistical description of	5			v	v	v			v	
		observation results. Fundamentals of										
		correlation analysis. Fundamentals of										
		regression analysis. Solving standard										
		analysis Nonparametric methods of										
		statistics.										
34	Statistical	Multi-dimensional samples. Preliminary	5			v	v	v			v	
	methods of data	analysis of multidimensional data.										
	analysis	Methods for modeling random variables.										
		Robust statistical estimation. Methods of statistical estimation and comparison of										
		samples. Non-parametric methods for										
		testing sample homogeneity. Dispersion										
		analysis. Methods for processing rank										
		data. Component analysis. Methods for										
25	Databasa	multidimensional data classification	5		14							
55	technologies	architecture of database management	5		v	v	v	v	v			
	teennoiogies	systems. Theoretical foundations of										
		relational database management systems.										
		Using the SQL language in application										
		programs. The concept of an active										
		Basic principles of database structure										
		design. Fundamentals of transactional										
		processing in database management										
		systems. Security of database										
		management systems. Elements of Data										
36	Software	The main stages of software development	5	V	V	V		 V				v
50	development	technology development. Evolution of	5	v	v	v		v				v
	technologies and	software lifecycle models. Standards that										
	standards	govern the software development										
		process. Requirements development and										
		external software design. A structural										
		programming of modules. Design and										
		development of the software interface.										
		Testing, debugging, and building										
		software. Software maintenance at the										
		development Development and										
		standardization of information										
		technologies.										
37	Machine	Logical models of machine learning.	5	v	v	v				v		
	learning	Ranking trees. Learning ordered lists of										
	technologies	rules. Learning unordered sets of										
		models. Probabilistic learning models										
		Probabilistic models of categorical data										
		Discriminant learning by optimizing										
		conditional likelihood. Probabilistic										
		Compression-based models Metric										
		models.										
38	Digital circuitry	Fundamentals of the algebra of logic.	5		v	v	v				v	v
	and computer	Basic logic elements. Decoders,										
	architecture	encoders, code converters. Purpose and										
		Purpose of digital comparators Theorem										
		de Morgana. The scheme and principle of										
		operation of digital comparators. Purpose										
		and principle of operation adders. Truth										
		tables of adders. Appointment and										
		active logic levels. Asynchronous RS-										
		triggers on the elements NAND, NOR.					L					
		Cycle of profile dis	ciplines Ur	niversi	ty com	ponen	t					
39	Visual .	Multidimensional representation of data.	5	v		v	v	v			v	
	programming and data mining	without and algorithms for solving the										
	and data mining	classification, clustering, etc. Practical										
		application of DataMining in industries.										
		DataMining methods and										
		models.Methods of statistical analysis	1									

· · · · · ·												
		and modeling focused on finding models										
40	Engineering	Methods for automating drawing and	5	v		v		v			v	
	graphics	graphic works using the AutoCAD	Ũ									
	(AutoCAD,	computer program. Execution of										
	Compass)	drawings, development of spatial models										
		of engineering and architectural objects,										
		technology										
41	Information	International and national	5		v	v	v			v		
	Security	standards in the field of information										
		security; main types of information										
		security threats and ways to counter these										
		field of information security basic										
		applied cryptography algorithms; basic										
		means of ensuring information security;										
		public key infrastructure; formal security										
		models. Implementing applied										
		programming languages, working with										
		cryptographic providers, using										
		cryptographic primitives in programming										
10	2.6	languages.	~									
42	Microprocessor	Classification of operating principles,	2		v	v	v		v		v	v
	industrial	systems. Structural and logical scheme of										
	programming	the microprocessor. Automation tools for										
		the purpose of building microprocessor										
		systems. Industrial controller program										
		based tools for building and diagnosing										
		control systems.										
43	Parallel	Basic information about parallel	5	v	v	v	v		v			
	programming	computers. Performance Analysis. First										
		steps towards parallel programming.										
		programming. MPI standard and other										
		local level languages. ZPL language and										
		other global languages. Perspective										
	D : 1	directions in parallel programming	-									
44	Design and	A set of parallel running programs.	5		v	v	v				v	v
	software systems	interaction tools. Methods and tools of										
	2	information security of software systems.										
		Standards and profiles in the field of										
		software systems. Methodological										
		Requirements analysis. Bottom-up and										
		top-down methods of software										
		development. Designing interfaces.										
		Models of software tools with a structural										
		Documentation of software systems										
		Automation systems for designing and										
		documenting software products.										
45	Development	Documented, feasible, testable	5		v	v		v				v
	and analysis of software	requirements, with a level of detail										
	requirements	and non-functional requirements. Types										
	1	of activities of a programmer when										
		analyzing requirements. Methodology for										
		the development of project working										
		content, timing, cost and quality human										
		resources, and risks in software										
		development.										
46	Network	Architecture Windows, Unix / Linux, OS	5		v		v			v		v
	operating	Auministration. The basic functions of the OS Time sharing systems. Functional										
	systems	components of the network OS. The main										
		functions of the client. Approaches to										
		building a network OS. Peer and server										
17	Software testing	network operating systems.	5									
4/	sonware testing	complex software. as well as the study of	5		v		v	v				v
		the main theoretical issues of										
		standardization, certification and quality										

		assurance according to the methods and algorithms of software quality control (software).							
48	Web Development	Features of IP protocols versions 4 and 6. IP tunnels. Designing a site. Principles of construction of hypertext information systems. Client web technologies: HTML, CSS, JavaScript, HTML5, Ajax, JQuery, XML; JavaScript scripting language, jQuery. Programming in PHP, PHP7. Framework YII, Laravel. SQL query language. Create MySQL database. PostgreSQL DBMS.	5	v	v		v	v	